\(\int \sin ^2(a+b x) (d \tan (a+b x))^{3/2} \, dx\) [65]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 247 \[ \int \sin ^2(a+b x) (d \tan (a+b x))^{3/2} \, dx=\frac {5 d^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}\right )}{4 \sqrt {2} b}-\frac {5 d^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}\right )}{4 \sqrt {2} b}+\frac {5 d^{3/2} \log \left (\sqrt {d}+\sqrt {d} \tan (a+b x)-\sqrt {2} \sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}-\frac {5 d^{3/2} \log \left (\sqrt {d}+\sqrt {d} \tan (a+b x)+\sqrt {2} \sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}+\frac {5 d \sqrt {d \tan (a+b x)}}{2 b}-\frac {\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d} \]

[Out]

5/8*d^(3/2)*arctan(1-2^(1/2)*(d*tan(b*x+a))^(1/2)/d^(1/2))/b*2^(1/2)-5/8*d^(3/2)*arctan(1+2^(1/2)*(d*tan(b*x+a
))^(1/2)/d^(1/2))/b*2^(1/2)+5/16*d^(3/2)*ln(d^(1/2)-2^(1/2)*(d*tan(b*x+a))^(1/2)+d^(1/2)*tan(b*x+a))/b*2^(1/2)
-5/16*d^(3/2)*ln(d^(1/2)+2^(1/2)*(d*tan(b*x+a))^(1/2)+d^(1/2)*tan(b*x+a))/b*2^(1/2)+5/2*d*(d*tan(b*x+a))^(1/2)
/b-1/2*cos(b*x+a)^2*(d*tan(b*x+a))^(5/2)/b/d

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {2671, 294, 327, 335, 217, 1179, 642, 1176, 631, 210} \[ \int \sin ^2(a+b x) (d \tan (a+b x))^{3/2} \, dx=\frac {5 d^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}\right )}{4 \sqrt {2} b}-\frac {5 d^{3/2} \arctan \left (\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}+1\right )}{4 \sqrt {2} b}+\frac {5 d^{3/2} \log \left (\sqrt {d} \tan (a+b x)-\sqrt {2} \sqrt {d \tan (a+b x)}+\sqrt {d}\right )}{8 \sqrt {2} b}-\frac {5 d^{3/2} \log \left (\sqrt {d} \tan (a+b x)+\sqrt {2} \sqrt {d \tan (a+b x)}+\sqrt {d}\right )}{8 \sqrt {2} b}+\frac {5 d \sqrt {d \tan (a+b x)}}{2 b}-\frac {\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d} \]

[In]

Int[Sin[a + b*x]^2*(d*Tan[a + b*x])^(3/2),x]

[Out]

(5*d^(3/2)*ArcTan[1 - (Sqrt[2]*Sqrt[d*Tan[a + b*x]])/Sqrt[d]])/(4*Sqrt[2]*b) - (5*d^(3/2)*ArcTan[1 + (Sqrt[2]*
Sqrt[d*Tan[a + b*x]])/Sqrt[d]])/(4*Sqrt[2]*b) + (5*d^(3/2)*Log[Sqrt[d] + Sqrt[d]*Tan[a + b*x] - Sqrt[2]*Sqrt[d
*Tan[a + b*x]]])/(8*Sqrt[2]*b) - (5*d^(3/2)*Log[Sqrt[d] + Sqrt[d]*Tan[a + b*x] + Sqrt[2]*Sqrt[d*Tan[a + b*x]]]
)/(8*Sqrt[2]*b) + (5*d*Sqrt[d*Tan[a + b*x]])/(2*b) - (Cos[a + b*x]^2*(d*Tan[a + b*x])^(5/2))/(2*b*d)

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 2671

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> With[{ff = FreeFactors[Ta
n[e + f*x], x]}, Dist[b*(ff/f), Subst[Int[(ff*x)^(m + n)/(b^2 + ff^2*x^2)^(m/2 + 1), x], x, b*(Tan[e + f*x]/ff
)], x]] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2]

Rubi steps \begin{align*} \text {integral}& = \frac {d \text {Subst}\left (\int \frac {x^{7/2}}{\left (d^2+x^2\right )^2} \, dx,x,d \tan (a+b x)\right )}{b} \\ & = -\frac {\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d}+\frac {(5 d) \text {Subst}\left (\int \frac {x^{3/2}}{d^2+x^2} \, dx,x,d \tan (a+b x)\right )}{4 b} \\ & = \frac {5 d \sqrt {d \tan (a+b x)}}{2 b}-\frac {\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d}-\frac {\left (5 d^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (d^2+x^2\right )} \, dx,x,d \tan (a+b x)\right )}{4 b} \\ & = \frac {5 d \sqrt {d \tan (a+b x)}}{2 b}-\frac {\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d}-\frac {\left (5 d^3\right ) \text {Subst}\left (\int \frac {1}{d^2+x^4} \, dx,x,\sqrt {d \tan (a+b x)}\right )}{2 b} \\ & = \frac {5 d \sqrt {d \tan (a+b x)}}{2 b}-\frac {\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d}-\frac {\left (5 d^2\right ) \text {Subst}\left (\int \frac {d-x^2}{d^2+x^4} \, dx,x,\sqrt {d \tan (a+b x)}\right )}{4 b}-\frac {\left (5 d^2\right ) \text {Subst}\left (\int \frac {d+x^2}{d^2+x^4} \, dx,x,\sqrt {d \tan (a+b x)}\right )}{4 b} \\ & = \frac {5 d \sqrt {d \tan (a+b x)}}{2 b}-\frac {\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d}+\frac {\left (5 d^{3/2}\right ) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {d}+2 x}{-d-\sqrt {2} \sqrt {d} x-x^2} \, dx,x,\sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}+\frac {\left (5 d^{3/2}\right ) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {d}-2 x}{-d+\sqrt {2} \sqrt {d} x-x^2} \, dx,x,\sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}-\frac {\left (5 d^2\right ) \text {Subst}\left (\int \frac {1}{d-\sqrt {2} \sqrt {d} x+x^2} \, dx,x,\sqrt {d \tan (a+b x)}\right )}{8 b}-\frac {\left (5 d^2\right ) \text {Subst}\left (\int \frac {1}{d+\sqrt {2} \sqrt {d} x+x^2} \, dx,x,\sqrt {d \tan (a+b x)}\right )}{8 b} \\ & = \frac {5 d^{3/2} \log \left (\sqrt {d}+\sqrt {d} \tan (a+b x)-\sqrt {2} \sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}-\frac {5 d^{3/2} \log \left (\sqrt {d}+\sqrt {d} \tan (a+b x)+\sqrt {2} \sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}+\frac {5 d \sqrt {d \tan (a+b x)}}{2 b}-\frac {\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d}-\frac {\left (5 d^{3/2}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}\right )}{4 \sqrt {2} b}+\frac {\left (5 d^{3/2}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}\right )}{4 \sqrt {2} b} \\ & = \frac {5 d^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}\right )}{4 \sqrt {2} b}-\frac {5 d^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {d \tan (a+b x)}}{\sqrt {d}}\right )}{4 \sqrt {2} b}+\frac {5 d^{3/2} \log \left (\sqrt {d}+\sqrt {d} \tan (a+b x)-\sqrt {2} \sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}-\frac {5 d^{3/2} \log \left (\sqrt {d}+\sqrt {d} \tan (a+b x)+\sqrt {2} \sqrt {d \tan (a+b x)}\right )}{8 \sqrt {2} b}+\frac {5 d \sqrt {d \tan (a+b x)}}{2 b}-\frac {\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.46 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.46 \[ \int \sin ^2(a+b x) (d \tan (a+b x))^{3/2} \, dx=\frac {d \csc (a+b x) \left (17 \sin (a+b x)+5 \arcsin (\cos (a+b x)-\sin (a+b x)) \sqrt {\sin (2 (a+b x))}-5 \log \left (\cos (a+b x)+\sin (a+b x)+\sqrt {\sin (2 (a+b x))}\right ) \sqrt {\sin (2 (a+b x))}+\sin (3 (a+b x))\right ) \sqrt {d \tan (a+b x)}}{8 b} \]

[In]

Integrate[Sin[a + b*x]^2*(d*Tan[a + b*x])^(3/2),x]

[Out]

(d*Csc[a + b*x]*(17*Sin[a + b*x] + 5*ArcSin[Cos[a + b*x] - Sin[a + b*x]]*Sqrt[Sin[2*(a + b*x)]] - 5*Log[Cos[a
+ b*x] + Sin[a + b*x] + Sqrt[Sin[2*(a + b*x)]]]*Sqrt[Sin[2*(a + b*x)]] + Sin[3*(a + b*x)])*Sqrt[d*Tan[a + b*x]
])/(8*b)

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1082\) vs. \(2(187)=374\).

Time = 2.33 (sec) , antiderivative size = 1083, normalized size of antiderivative = 4.38

method result size
default \(\text {Expression too large to display}\) \(1083\)

[In]

int(sin(b*x+a)^2*(d*tan(b*x+a))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/16/b*sin(b*x+a)*(4*cos(b*x+a)^2*sin(b*x+a)*2^(1/2)+5*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*ln(-(c
ot(b*x+a)*cos(b*x+a)-2*cot(b*x+a)-2*sin(b*x+a)*(-cot(b*x+a)^3+3*cot(b*x+a)^2*csc(b*x+a)-3*cot(b*x+a)*csc(b*x+a
)^2+csc(b*x+a)^3+cot(b*x+a)-csc(b*x+a))^(1/2)-2*cos(b*x+a)-sin(b*x+a)+csc(b*x+a)+2)/(-1+cos(b*x+a)))*cos(b*x+a
)-5*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*ln(-(cot(b*x+a)*cos(b*x+a)-2*cot(b*x+a)+2*sin(b*x+a)*(-cot
(b*x+a)^3+3*cot(b*x+a)^2*csc(b*x+a)-3*cot(b*x+a)*csc(b*x+a)^2+csc(b*x+a)^3+cot(b*x+a)-csc(b*x+a))^(1/2)-2*cos(
b*x+a)-sin(b*x+a)+csc(b*x+a)+2)/(-1+cos(b*x+a)))*cos(b*x+a)+10*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)
*arctan((-sin(b*x+a)*2^(1/2)*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)+cos(b*x+a)-1)/(-1+cos(b*x+a)))*co
s(b*x+a)-10*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*arctan((sin(b*x+a)*2^(1/2)*(-cos(b*x+a)*sin(b*x+a)
/(cos(b*x+a)+1)^2)^(1/2)+cos(b*x+a)-1)/(-1+cos(b*x+a)))*cos(b*x+a)+16*sin(b*x+a)*2^(1/2)+5*(-cos(b*x+a)*sin(b*
x+a)/(cos(b*x+a)+1)^2)^(1/2)*ln(-(cot(b*x+a)*cos(b*x+a)-2*cot(b*x+a)-2*sin(b*x+a)*(-cot(b*x+a)^3+3*cot(b*x+a)^
2*csc(b*x+a)-3*cot(b*x+a)*csc(b*x+a)^2+csc(b*x+a)^3+cot(b*x+a)-csc(b*x+a))^(1/2)-2*cos(b*x+a)-sin(b*x+a)+csc(b
*x+a)+2)/(-1+cos(b*x+a)))-5*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*ln(-(cot(b*x+a)*cos(b*x+a)-2*cot(b
*x+a)+2*sin(b*x+a)*(-cot(b*x+a)^3+3*cot(b*x+a)^2*csc(b*x+a)-3*cot(b*x+a)*csc(b*x+a)^2+csc(b*x+a)^3+cot(b*x+a)-
csc(b*x+a))^(1/2)-2*cos(b*x+a)-sin(b*x+a)+csc(b*x+a)+2)/(-1+cos(b*x+a)))+10*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a
)+1)^2)^(1/2)*arctan((-sin(b*x+a)*2^(1/2)*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)+cos(b*x+a)-1)/(-1+co
s(b*x+a)))-10*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*arctan((sin(b*x+a)*2^(1/2)*(-cos(b*x+a)*sin(b*x+
a)/(cos(b*x+a)+1)^2)^(1/2)+cos(b*x+a)-1)/(-1+cos(b*x+a))))*(d*tan(b*x+a))^(1/2)*d/(-1+cos(b*x+a))/(cos(b*x+a)+
1)*2^(1/2)

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.38 (sec) , antiderivative size = 942, normalized size of antiderivative = 3.81 \[ \int \sin ^2(a+b x) (d \tan (a+b x))^{3/2} \, dx=\text {Too large to display} \]

[In]

integrate(sin(b*x+a)^2*(d*tan(b*x+a))^(3/2),x, algorithm="fricas")

[Out]

-1/32*(5*I*(-d^6/b^4)^(1/4)*b*log(250*d^5*cos(b*x + a)^2 + 250*sqrt(-d^6/b^4)*b^2*d^2*cos(b*x + a)*sin(b*x + a
) - 125*d^5 - 250*(I*(-d^6/b^4)^(1/4)*b*d^3*cos(b*x + a)*sin(b*x + a) - I*(-d^6/b^4)^(3/4)*b^3*cos(b*x + a)^2)
*sqrt(d*sin(b*x + a)/cos(b*x + a))) - 5*I*(-d^6/b^4)^(1/4)*b*log(250*d^5*cos(b*x + a)^2 + 250*sqrt(-d^6/b^4)*b
^2*d^2*cos(b*x + a)*sin(b*x + a) - 125*d^5 - 250*(-I*(-d^6/b^4)^(1/4)*b*d^3*cos(b*x + a)*sin(b*x + a) + I*(-d^
6/b^4)^(3/4)*b^3*cos(b*x + a)^2)*sqrt(d*sin(b*x + a)/cos(b*x + a))) - 5*(-d^6/b^4)^(1/4)*b*log(250*d^5*cos(b*x
 + a)^2 - 250*sqrt(-d^6/b^4)*b^2*d^2*cos(b*x + a)*sin(b*x + a) - 125*d^5 + 250*((-d^6/b^4)^(1/4)*b*d^3*cos(b*x
 + a)*sin(b*x + a) + (-d^6/b^4)^(3/4)*b^3*cos(b*x + a)^2)*sqrt(d*sin(b*x + a)/cos(b*x + a))) + 5*(-d^6/b^4)^(1
/4)*b*log(250*d^5*cos(b*x + a)^2 - 250*sqrt(-d^6/b^4)*b^2*d^2*cos(b*x + a)*sin(b*x + a) - 125*d^5 - 250*((-d^6
/b^4)^(1/4)*b*d^3*cos(b*x + a)*sin(b*x + a) + (-d^6/b^4)^(3/4)*b^3*cos(b*x + a)^2)*sqrt(d*sin(b*x + a)/cos(b*x
 + a))) - 5*(-d^6/b^4)^(1/4)*b*log(-125*d^5 + 250*((-d^6/b^4)^(1/4)*b*d^3*cos(b*x + a)*sin(b*x + a) - (-d^6/b^
4)^(3/4)*b^3*cos(b*x + a)^2)*sqrt(d*sin(b*x + a)/cos(b*x + a))) + 5*(-d^6/b^4)^(1/4)*b*log(-125*d^5 - 250*((-d
^6/b^4)^(1/4)*b*d^3*cos(b*x + a)*sin(b*x + a) - (-d^6/b^4)^(3/4)*b^3*cos(b*x + a)^2)*sqrt(d*sin(b*x + a)/cos(b
*x + a))) + 5*I*(-d^6/b^4)^(1/4)*b*log(-125*d^5 - 250*(I*(-d^6/b^4)^(1/4)*b*d^3*cos(b*x + a)*sin(b*x + a) + I*
(-d^6/b^4)^(3/4)*b^3*cos(b*x + a)^2)*sqrt(d*sin(b*x + a)/cos(b*x + a))) - 5*I*(-d^6/b^4)^(1/4)*b*log(-125*d^5
- 250*(-I*(-d^6/b^4)^(1/4)*b*d^3*cos(b*x + a)*sin(b*x + a) - I*(-d^6/b^4)^(3/4)*b^3*cos(b*x + a)^2)*sqrt(d*sin
(b*x + a)/cos(b*x + a))) - 16*(d*cos(b*x + a)^2 + 4*d)*sqrt(d*sin(b*x + a)/cos(b*x + a)))/b

Sympy [F]

\[ \int \sin ^2(a+b x) (d \tan (a+b x))^{3/2} \, dx=\int \left (d \tan {\left (a + b x \right )}\right )^{\frac {3}{2}} \sin ^{2}{\left (a + b x \right )}\, dx \]

[In]

integrate(sin(b*x+a)**2*(d*tan(b*x+a))**(3/2),x)

[Out]

Integral((d*tan(a + b*x))**(3/2)*sin(a + b*x)**2, x)

Maxima [A] (verification not implemented)

none

Time = 0.38 (sec) , antiderivative size = 204, normalized size of antiderivative = 0.83 \[ \int \sin ^2(a+b x) (d \tan (a+b x))^{3/2} \, dx=-\frac {10 \, \sqrt {2} d^{\frac {9}{2}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {d \tan \left (b x + a\right )}\right )}}{2 \, \sqrt {d}}\right ) + 10 \, \sqrt {2} d^{\frac {9}{2}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {d \tan \left (b x + a\right )}\right )}}{2 \, \sqrt {d}}\right ) + 5 \, \sqrt {2} d^{\frac {9}{2}} \log \left (d \tan \left (b x + a\right ) + \sqrt {2} \sqrt {d \tan \left (b x + a\right )} \sqrt {d} + d\right ) - 5 \, \sqrt {2} d^{\frac {9}{2}} \log \left (d \tan \left (b x + a\right ) - \sqrt {2} \sqrt {d \tan \left (b x + a\right )} \sqrt {d} + d\right ) - \frac {8 \, \sqrt {d \tan \left (b x + a\right )} d^{6}}{d^{2} \tan \left (b x + a\right )^{2} + d^{2}} - 32 \, \sqrt {d \tan \left (b x + a\right )} d^{4}}{16 \, b d^{3}} \]

[In]

integrate(sin(b*x+a)^2*(d*tan(b*x+a))^(3/2),x, algorithm="maxima")

[Out]

-1/16*(10*sqrt(2)*d^(9/2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d*tan(b*x + a)))/sqrt(d)) + 10*sqrt(2)*
d^(9/2)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(d) - 2*sqrt(d*tan(b*x + a)))/sqrt(d)) + 5*sqrt(2)*d^(9/2)*log(d*tan(
b*x + a) + sqrt(2)*sqrt(d*tan(b*x + a))*sqrt(d) + d) - 5*sqrt(2)*d^(9/2)*log(d*tan(b*x + a) - sqrt(2)*sqrt(d*t
an(b*x + a))*sqrt(d) + d) - 8*sqrt(d*tan(b*x + a))*d^6/(d^2*tan(b*x + a)^2 + d^2) - 32*sqrt(d*tan(b*x + a))*d^
4)/(b*d^3)

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 226, normalized size of antiderivative = 0.91 \[ \int \sin ^2(a+b x) (d \tan (a+b x))^{3/2} \, dx=-\frac {1}{16} \, d {\left (\frac {10 \, \sqrt {2} \sqrt {{\left | d \right |}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {{\left | d \right |}} + 2 \, \sqrt {d \tan \left (b x + a\right )}\right )}}{2 \, \sqrt {{\left | d \right |}}}\right )}{b} + \frac {10 \, \sqrt {2} \sqrt {{\left | d \right |}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {{\left | d \right |}} - 2 \, \sqrt {d \tan \left (b x + a\right )}\right )}}{2 \, \sqrt {{\left | d \right |}}}\right )}{b} + \frac {5 \, \sqrt {2} \sqrt {{\left | d \right |}} \log \left (d \tan \left (b x + a\right ) + \sqrt {2} \sqrt {d \tan \left (b x + a\right )} \sqrt {{\left | d \right |}} + {\left | d \right |}\right )}{b} - \frac {5 \, \sqrt {2} \sqrt {{\left | d \right |}} \log \left (d \tan \left (b x + a\right ) - \sqrt {2} \sqrt {d \tan \left (b x + a\right )} \sqrt {{\left | d \right |}} + {\left | d \right |}\right )}{b} - \frac {8 \, \sqrt {d \tan \left (b x + a\right )} d^{2}}{{\left (d^{2} \tan \left (b x + a\right )^{2} + d^{2}\right )} b} - \frac {32 \, \sqrt {d \tan \left (b x + a\right )}}{b}\right )} \]

[In]

integrate(sin(b*x+a)^2*(d*tan(b*x+a))^(3/2),x, algorithm="giac")

[Out]

-1/16*d*(10*sqrt(2)*sqrt(abs(d))*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(abs(d)) + 2*sqrt(d*tan(b*x + a)))/sqrt(abs(d
)))/b + 10*sqrt(2)*sqrt(abs(d))*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(abs(d)) - 2*sqrt(d*tan(b*x + a)))/sqrt(abs(d
)))/b + 5*sqrt(2)*sqrt(abs(d))*log(d*tan(b*x + a) + sqrt(2)*sqrt(d*tan(b*x + a))*sqrt(abs(d)) + abs(d))/b - 5*
sqrt(2)*sqrt(abs(d))*log(d*tan(b*x + a) - sqrt(2)*sqrt(d*tan(b*x + a))*sqrt(abs(d)) + abs(d))/b - 8*sqrt(d*tan
(b*x + a))*d^2/((d^2*tan(b*x + a)^2 + d^2)*b) - 32*sqrt(d*tan(b*x + a))/b)

Mupad [F(-1)]

Timed out. \[ \int \sin ^2(a+b x) (d \tan (a+b x))^{3/2} \, dx=\int {\sin \left (a+b\,x\right )}^2\,{\left (d\,\mathrm {tan}\left (a+b\,x\right )\right )}^{3/2} \,d x \]

[In]

int(sin(a + b*x)^2*(d*tan(a + b*x))^(3/2),x)

[Out]

int(sin(a + b*x)^2*(d*tan(a + b*x))^(3/2), x)